The Parallel Postulate in Constructive Geometry
نویسنده
چکیده
Euclidean geometry, as presented by Euclid, consists of straightedge-and-compass constructions and rigorous reasoning about the results of those constructions. A consideration of the relation of the Euclidean “constructions” to “constructive mathematics” leads to the development of a first-order theory ECG of the “Euclidean Constructive Geometry”, which can serve as an axiomatization of Euclid rather close in spirit to the Elements of Euclid. ECG is axiomatized in a quantifier-free, disjunction-free way. Unlike previous intuitionistic geometries, it does not have apartness. Unlike previous algebraic theories of geometric constructions, it does not have a test-for-equality construction. In previous work [3], we have shown that ECG corresponds well to Euclid’s reasoning, and that when it proves an existential theorem, then the things proved to exist can be constructed by Euclidean ruler-and-compass constructions. In this paper we take up the the formal relationships between three versions of Euclid’s parallel postulate: Euclid’s own formulation in his Postulate 5, Playfair’s 1795 version, which is the one usually used in modern axiomatizations, and the version used in ECG. We completely settle the questions about which versions imply which others using only constructive logic: ECG’s version implies Euclid 5, which implies Playfair, and none of the reverse implications are provable. 1
منابع مشابه
Constructive Geometry and the Parallel Postulate
Euclidean geometry, as presented by Euclid, consists of straightedge-andcompass constructions and rigorous reasoning about the results of those constructions. We show that Euclidean geometry can be developed using only intuitionistic logic. This involves finding “uniform” constructions where normally a case distinction is used. For example, in finding a perpendicular to line L through point p, ...
متن کاملFoundations of Euclidean Constructive Geometry
Euclidean geometry, as presented by Euclid, consists of straightedge-andcompass constructions and rigorous reasoning about the results of those constructions. A consideration of the relation of the Euclidean “constructions” to “constructive mathematics” leads to the development of a first-order theory ECG of “Euclidean Constructive Geometry”, which can serve as an axiomatization of Euclid rathe...
متن کاملConstructive Geometry
Euclidean geometry, as presented by Euclid, consists of straightedge-and-compass constructions and rigorous reasoning about the results of those constructions. A consideration of the relation of the Euclidean “constructions” to “constructive mathematics” leads to the development of a first-order theory ECG of the “Euclidean Constructive Geometry”, which can serve as an axiomatization of Euclid ...
متن کاملParleda: a Library for Parallel Processing in Computational Geometry Applications
ParLeda is a software library that provides the basic primitives needed for parallel implementation of computational geometry applications. It can also be used in implementing a parallel application that uses geometric data structures. The parallel model that we use is based on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced here. ParLeda uses two main lib...
متن کاملLogic of Ruler and Compass Constructions
We describe a theory ECG of “Euclidean constructive geometry”. Things that ECG proves to exist can be constructed with ruler and compass. ECG permits us to make constructive distinctions between different forms of the parallel postulate. We show that Euclid’s version, which says that under certain circumstances two lines meet (i.e., a point of intersection exists) is not constructively equivale...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009